Выбор читателей. Как посчитать проценты с помощью онлайн-сервисов. Найти 20 от суммы

Вопрос «как высчитать проценты» начинает одолевать школьников в 5 классе. Именно тогда появляется такая тема в математике. Кажется, что пятиклассникам сложных задач не предлагают. Тогда почему с этими заданиями у многих проблемы? Возможно, все скрывается в непонимании сути этого понятия.

Основа всего — понимание смысла

Это ключик ко всем задачам на данную тему. Если человек может определить один процент, то ему под силу тринадцать, восемьдесят девять и сто тридцать пять. Хоть четыреста двадцать…

А это сотая часть от общего числа, о котором идет речь в задаче. Причем оно может быть задано явно, а бывает, о нем только косвенно идет речь.

Какие существуют ситуации?

Узнать процент от числа

То есть известна некоторая величина и требуется вычислить сколько будет х % от нее. Это основная задача в теме. Итак, как высчитать процент от числа? Нужно составить пропорцию, в первой строчке будут записаны известные данные, во второй — искомые. Теперь нужно умножить известную величину на искомый процент и разделить на 100 %.

Если записать это короче, то получится следующая пропорция:

известное число — 100 %,

искомое число — х %.

Из этой записи можно составить формулу:

искомое = (известное * х %) / 100 %.

Результат получается от перемножения крест-накрест двух известных величин и деления на ту, что осталась без пары.

Если в задаче общее число складывается из нескольких, то встает вопрос о том, как высчитать процент из суммы. Здесь можно поступить двумя способами:

Узнать число по известному проценту

В этой ситуации известна часть числа и соответствующий ей %. Чтобы узнать, как правильно высчитывать проценты, потребуется воспользоваться уже записанной пропорцией. Только в первой строке будет искомое число, а во второй — известное:

искомое = (известное * 100 %) / х %.

Узнать процент одного числа от другого

Даны два значения, и требуется вычислить, сколько процентов будет составлять большее или меньшее. Обычно такие задачи содержат информацию о перевыполненном плане или, наоборот, об уменьшении количества по сравнению с более ранним значением.

Опять же требуется пропорция. За 100 % принято брать ту величину, с которой сравнивают.

первое значение — 100 %,

второе значение — х %,

х = (второе значение * 100 %) / первое значение.

Узнать процент, когда ничего не известно об общем числе

В таких задачах сообщается о том, что некоторое число составляет известный процент, а другое — неизвестный. Вот его-то и нужно вычислить. Как высчитать проценты в этом случае? Снова с помощью пропорции:

первое число — известный %,

второе число — х %,

х = (второе * известный %) / первое.

Задания с более сложными вопросами

Узнать, на сколько процентов различаются числа

Здесь возможны два варианта. Первый, когда нужно сравнить большее с меньшим. И найти, на сколько процентов второе меньше. В этой ситуации вопрос о том, как высчитать проценты, сводится к тому, чтобы понять, что выбрать за 100 %. То, которое больше. И тогда пропорция будет выглядеть так:

большее число — 100 %,

меньшее число — х %,

х = (меньшее * 100 %) / большее.

Но это не ответ. Для него потребуется вычесть из 100 % найденное значение х.

Второй вариант, когда сравнивается меньшее число с тем, которое больше. В нем за 100 % принимается меньшее значение. Вид у пропорции такой:

меньшее число — 100 %,

большее число — х %,

х = (большее * 100 %) / меньшее.

Для расчета итогового значения нужно узнать, сколько будет х % — 100 %.

Узнать результат от увеличения числа на известный процент

В таких заданиях нужно найти ответ, который получится после увеличения известного на некоторое значение процентов от него. В этом случае пропорция будет выглядеть так:

известное число — 100 %,

искомое число — 100 + х %,

искомое = (известное * (100 + х %)) / 100 %.

Узнать результат от уменьшения числа на известное число процентов

известное число — 100 %,

искомое число — 100 — х %,

искомое = (известное * (100 — х %)) / 100 %.

Калькулятор как помощник в вычислении процентов

Им можно пользоваться двумя способами. Первый, когда все описанные выше действия поэтапно выполняются на экране прибора. Здесь все просто. Нужно только не запутаться с порядком действий. В общем, калькулятор просто заменит человека в моменте практического расчета.

Во втором способе он сделает все сам. К примеру, можно выбрать инженерный вид калькулятора на компьютере и ввести в него сразу всю формулу со скобками и необходимыми действиями. После нажатия клавиши «=» в окошке высветится ответ.

Бывает, что вариант расчета простой, когда нужно узнать процент от известной величины. Тогда можно воспользоваться специальной функцией, которая обозначена кнопкой «%».

Для этого на калькуляторе нужно набрать известную величину. Потом нажать знак умножения. Затем количество процентов и кнопку «%». На экране сразу же появится ответ.

Они позволят не запутаться. Причем под силу будет ответить на любой вопрос о том, как высчитать процент из суммы или разности, больше не придется задумываться — все будет решаться автоматически.

  1. Всегда переходить к конкретным величинам. Процент — это что-то безликое. А вот килограммы, ученики и ящики — вполне осязаемые и понятные. К ним и нужно стремиться.
  2. Очень внимательно читать условие. Потому что бывают ситуации, когда проценты берутся несколько раз и от разных величин.
  3. Проверить ответ. Он точно конечный? Или, может, это только промежуточное значение.

Проценты
— удобная относительная мера, позволяющая оперировать с числами в привычном для человека формате не зависимо от размера самих чисел. Это своего рода масштаб, к которому можно привести любое число. Один процент — это одна сотая доля. Само слово процент
происходит от латинского «pro centum», что означает «сотая доля».

Проценты незаменимы в страховании, финансовой сфере, в экономических расчетах. В процентах выражаются ставки налогов, доходность капиталовложений, плата за заемные денежные средства (например, кредиты банка), темпы роста экономики и многое другое.

1. Формула расчета доли в процентном отношении.

Пусть задано два числа: A 1 и A 2 . Надо определить, какую долю в процентном отношении составляет число A 1 от A 2 .

P = A 1 / A 2 * 100.

В финансовых расчетах часто пишут

P = A 1 / A 2 * 100%.

Пример.
Какую долю в процентном отношении составляет 10 от 200

P = 10 / 200 * 100 = 5 (процентов).

2. Формула расчета процента от числа.

Пусть задано число A 2 . Надо вычислить число A 1 , составляющее заданный процент P от A 2 .

A 1 = A 2 * P / 100.

Пример.
Банковский кредит 10 000 рублей под 5 процентов. Сумма процентов составит.

P = 10000 * 5 / 100 = 500.

3. Формула увеличения числа на заданный процент. Сумма с НДС.

Пусть задано число A 1 . Надо вычислить число A 2 , которое больше числа A 1 на заданный процент P. Используя формулу расчета процента от числа, получаем:

A 2 = A 1 + A 1 * P / 100.

A 2 = A 1 * (1 + P / 100).

Пример 1.
Банковский кредит 10 000 рублей под 5 процентов. Общая сумма долга составит.

A 2 = 10000 * (1 + 5 / 100) = 10000 * 1.05 = 10500.

Пример 2.
Сумма без НДС равна 1000 рублей, НДС 18 процентов.
Сумма с НДС составляет:

A 2 = 1000 * (1 + 18 / 100) = 1000 * 1.18 = 1180.

style=»center»>

4. Формула уменьшения числа на заданный процент.

Пусть задано число A 1 . Надо вычислить число A 2 , которое меньше числа A 1 на заданный процент P. Используя формулу расчета процента от числа, получаем:

A 2 = A 1 — A 1 * P / 100.

A 2 = A 1 * (1 — P / 100).

Пример.
Денежная сумма к выдаче за минусом подоходного налога (13 процентов).
Пусть оклад составляет 10 000 рублей. Тогда сумма к выдаче составляет:

A 2 = 10000 * (1 — 13 / 100) = 10000 * 0.87 = 8700.

5. Формула вычисления исходной суммы. Сумма без НДС.

Пусть задано число A 1 , равное некоторому исходному числу A 2 с прибавленным процентом P. Надо вычислить число A 2 . Иными словами: знаем денежную сумму с НДС, надо вычислить сумму без НДС.

Обозначим p = P / 100, тогда:

A 1 = A 2 + p * A 2 .

A 1 = A 2 * (1 + p).

Тогда

A 2 = A 1 / (1 + p).

Пример.
Сумма с НДС равна 1180 рублей, НДС 18 процентов.
Стоимость без НДС составляет:

A 2 = 1180 / (1 + 0.18) = 1000.

style=»center»>

6. Расчет процентов на банковский депозит. Формула расчета простых процентов.

Если проценты на депозит начисляются один раз в конце срока депозита, то сумма процентов вычисляется по формуле простых процентов.

S = K + (K*P*d/D)/100
Sp = (K*P*d/D)/100

Где:
S — сумма банковского депозита с процентами,
Sp — сумма процентов (доход),
K — первоначальная сумма (капитал),

d — количество дней начисления процентов по привлеченному вкладу,
D — количество дней в календарном году (365 или 366).

Пример 1.
Банком принят депозит в сумме 100 тыс. рублей сроком на 1 год по ставке 20 процентов.

S = 100000 + 100000*20*365/365/100 = 120000
Sp = 100000 * 20*365/365/100 = 20000

Пример 2.
Банком принят депозит в сумме 100 тыс. рублей сроком на 30 дней по ставке 20 процентов.

S = 100000 + 100000*20*30/365/100 = 101643.84
Sp = 100000 * 20*30/365/100 = 1643.84

7. Расчет процентов на банковский депозит при начислении процента на процент. Формула расчета сложных процентов.

Если проценты на депозит начисляются несколько раз через равные промежутки времени и зачисляются во вклад, то сумма вклада с процентами вычисляется по формуле сложных процентов.

S = K * (1 + P*d/D/100) N

Где:

P — годовая процентная ставка,

При расчете сложных процентов проще вычислить общую сумму с процентами, а потом вычислить сумму процентов (доход):

Sp = S — K = K * (1 + P*d/D/100) N — K

Sp = K * ((1 + P*d/D/100) N — 1)

Пример 1.
Принят депозит в сумме 100 тыс. рублей сроком на 90 дней по ставке 20 процентов годовых с начислением процентов каждые 30 дней.

S = 100000 * (1 + 20*30/365/100) 3 = 105 013.02
Sp = 100000 * ((1 + 20*30/365/100) N — 1) = 5 013.02

style=»center»>

Пример 2.
Проверим формулу начисления сложных процентов для случая из предыдущего примера.

Разобьем срок депозита на 3 периода и рассчитаем начисление процентов для каждого периода, использую формулу простых процентов.

S 1 = 100000 + 100000*20*30/365/100 = 101643.84
Sp 1 = 100000 * 20*30/365/100 = 1643.84

S 2 = 101643.84 + 101643.84*20*30/365/100 = 103314.70
Sp 2 = 101643.84 * 20*30/365/100 = 1670.86

S 3 = 103314.70 + 103314.70*20*30/365/100 = 105013.02
Sp 3 = 103314.70 * 20*30/365/100 = 1698.32

Общая сумма процентов с учетом начисления процентов на проценты (сложные проценты)

Sp = Sp 1 + Sp 2 + Sp 3 = 5013.02

Таким образом, формула вычисления сложных процентов верна.

8. Еще одна формула сложных процентов.

Если процентная ставка дана не в годовом исчислении, а непосредственно для периода начисления, то формула сложных процентов выглядит так.

S = K * (1 + P/100) N

Где:
S — сумма депозита с процентами,
К — сумма депозита (капитал),
P — процентная ставка,
N — число периодов начисления процентов.

Пример.
Принят депозит в сумме 100 тыс. рублей сроком на 3 месяца с ежемесячным начислением процентов по ставке 1.5 процента в месяц.

S = 100000 * (1 + 1.5/100) 3 = 104 567.84
Sp = 100000 * ((1 + 1.5/100) 3 — 1) = 4 567.84

style=»center»>

Процент — это одна сотая доля числа, принимаемого за целое. Проценты используются для обозначения отношения части к целому, а также для сравнения величин.

1% = 1
100

= 0,01

Калькулятор процентов позволяет выполнить следующие операции:

Найти процент от числа

Чтобы найти процент p

от числа, нужно умножить это число на дробь p
100

Найдем 12% от числа 300:

300 · 12
100

= 300 · 0,12 = 36

12% от числа 300 равняется 36.

Например, товар стоит 500 рублей и на него действует скидка 7%. Найдем абсолютное значение скидки:

500 · 7
100

= 500 · 0,07 = 35

Таким образом, скидка равна 35 рублей.

Сколько процентов составляет одно число от другого

Чтобы вычислить процентное отношение чисел, нужно одно число разделить на другое и умножить на 100%.

Вычислим, сколько процентов составляет число 12 от числа 30:

12
30

· 100 = 0,4 · 100 = 40%

Число 12 составляет 40% от числа 30.

Например, книга содержит 340 страниц. Вася прочитал 200 страниц. Вычислим, сколько процентов от всей книги прочитал Вася.

200
340

· 100% = 0,59 · 100 = 59%

Таким образом, Вася прочитал 59% от всей книги.

Прибавить проценты к числу

Чтобы прибавить к числу p

процентов, нужно умножить это число на (1 + p
100

)

Прибавим 30% к числу 200:

200 · (1 + 30
100

) = 200 · 1,3 = 260

200 + 30% равняется 260.

Например, абонемент в бассейн стоит 1000 рублей. Со следующего месяца обещали поднять цену на 20%. Вычислим, сколько будет стоить абонемент.

1000 · (1 + 20
100

) = 1000 · 1,2 = 1200

Таким образом, абонемент будет стоить 1200 рублей.

Вычесть проценты из числа

Чтобы отнять от числа p

процентов, нужно умножить это число на (1 — p
100

)

Отнимем 30% от числа 200:

200 · (1 — 30
100

) = 200 · 0,7 = 140

200 — 30% равняется 140.

Например, велосипед стоит 30000 рублей. Магазин сделал на него скидку 5%. Вычислим, сколько будет стоить велосипед с учетом скидки.

30000 · (1 — 5
100

) = 30000 · 0,95 = 28500

Таким образом, велосипед будет стоить 28500 рублей.

На сколько процентов одно число больше другого

Чтобы вычислить, на сколько процентов одно число больше другого, нужно первое число разделить на второе, умножить результат на 100 и вычесть 100.

Вычислим, на сколько процентов число 20 больше числа 5:

20
5

· 100 — 100 = 4 · 100 — 100 = 400 — 100 = 300%
Число 20 больше числа 5 на 300%.

Например, зарплата начальника равна 50000 рублей, а сотрудника — 30000 рублей. Найдем, на сколько процентов зарплата начальника больше:

50000
35000

· 100 — 100 = 1,43 * 100 — 100 = 143 — 100 = 43%

Таким образом, зарплата начальника на 43% выше зарплаты сотрудника.

На сколько процентов одно число меньше другого

Чтобы вычислить, на сколько процентов одно число меньше другого, нужно из 100 вычесть отношение первого числа ко второму, умноженное на 100.

Вычислим, на сколько процентов число 5 меньше числа 20:

100 — 5
20

· 100 = 100 — 0,25 · 100 = 100 — 25 = 75%

Число 5 меньше числа 20 на 75%.

Например, фрилансер Олег в январе выполнил заказы на 40000 рублей, а в феврале на 30000 рублей. Найдем, на сколько процентов Олег в феврале заработал меньше, чем в январе:

100 — 30000
40000

· 100 = 100 — 0,75 * 100 = 100 — 75 = 25%

Таким образом, в феврале Олег заработал на 25% меньше, чем в январе.

Найти 100 процентов

Если число x

это p

процентов, то найти 100 процентов можно умножив число x

на 100
p

Найдем 100%, если 25% это 7:

7 · 100
25

= 7 · 4 = 28

Если 25% равняется 7, то 100% равняется 28.

Например, Катя копирует фотографии с фотоаппарата на компьютер. За 5 минут скопировалось 20% фотографий. Найдем, сколько всего времени занимает процесс копирования:

5 · 100
20

= 5 · 5 = 25

Получаем, что процесс копирования всех фотографий занимает 30 минут.

Процент — сотая доля числа. Это математическое понятие широко применяется в повседневной жизни: в процентах указаны статистические данные, состав продуктов питания и различных материалов, а также ставки по кредитам и депозитам.

Проценты позволяют сравнивать между собой части целого, значительно упрощая расчеты Вычисление процентов можно выполнить в уме или на бумаге, используя формулу, а также с помощью калькулятора или программы Excel.

Быстрая навигация по статье

  • Число, от которого нужно найти процент, поделить на 100;
  • Полученный результат умножить на искомый процент.

Для удобства число можно умножать на проценты, записанные в виде десятичной дроби (поделить их на сто). Например, чтобы найти 20% от 50, необходимо 50/100*20=10 или 50*0,2=10.

Вычисление на калькуляторе

Для подсчета процентов можно использовать калькулятор. Для этого потребуется:

  • Ввести нужное число;
  • Нажать кнопку «Умножить»;
  • Указать количество процентов;
  • Нажать клавишу «%».

Если обычного калькулятора нет в наличии, можно воспользоваться программой «Калькулятор» в операционной системе Windows (зайти в «Пуск», «Стандартные программы», «Калькулятор»). Существует также множество онлайн-калькуляторов, для использования которых необходим доступ к интернету.

Excel

Расчет процентов можно выполнять в программе Microsoft Office Excel. Для этого необходимо:

  • Открыть программу;
  • В любую ячейку ввести число, от которого нужно найти процент;
  • В ячейку, в которой будет отображаться результат, поставить знак «=»;
  • Выделить ячейку с указанным числом, ввести знак «*», ввести проценты, поставить значок «%» и нажать кнопку “Enter”;
  • Во второй ячейке отобразится результат вычислений.

Вводить числа можно в любые ячейки файла (на одном листе или на разных).

Процентное соотношение

Существуют расчеты, позволяющие определить, сколько процентов составляет одно число от другого. Для такого расчета потребуется:

  • Число, процентное соотношение которого нужно найти, необходимо умножить на 100;
  • Результат поделить на число, от которого вычисляется процент.

Например, для того чтобы найти сколько процентов составляет 50 от 200, нужно 50*100/200=25 (50 составляет 25 процентов от 200).

Нахождение числа по проценту

  • Заданное число разделить на процент;
  • Полученный результат умножить на 100.

Например, для нахождения числа, 25% от которого составляет 50, потребуется 50/25*100=200.

Поделитесь этой статьёй
с друзьями в соц. сетях:

Частное двух чисел называют отношением этих чисел.

Рассмотрим на примерах как находить отношение двух чисел.

4
и 20

Число 4
составляет 20%
от числа 20
. Для вычисления разделим 4
на 20
и умножим на 100
, получим 4 ÷ 20 × 100 = 20%

Число 20
составляет 500%
от числа 4
. Для вычисления разделим 20
на 4
и умножим на 100
, получим 20 ÷ 4 × 100 = 500%

Из числа 4
получим 20
увеличив на 400%
. Для вычисления разделим 20
на 4
, умножим на 100
и отнимем 100%
, получим 20 ÷ 4 × 100 — 100 = 400%

Из числа 20
получим 4
уменьшив число на 80%
. Для вычисления разделим 4
на 20
, умножим на 100
и отнимем 100%
, получим 4 ÷ 20 × 100 — 100 = -80%
. Если в результате получается отрицательное значение, то число надо уменьшать, если положительно то увеличивать.

Найдем отношение двух вещественных чисел.

Пример Найдем отношение чисел 0.3
и 0.6

Число 0.3
составляет 50%
от числа 0.6
. Для вычисления разделим 0.3
на 0.6
и умножим на 100
, получим 0.3 ÷ 0.6 × 100 = 50%

Число 0.6
составляет 200%
от числа 0.3
.

Как высчитать процент от суммы?

Для вычисления разделим 0.6
на 0.3
и умножим на 100
, получим 0.6 ÷ 0.3 × 100 = 200%

Из числа 0.3
получим 0.6
увеличив на 100%
. Для вычисления разделим 0.6
на 0.3
, умножим на 100
и отнимем 100
, получим 0.6 ÷ 0.3 × 100 — 100 = 100%

Из числа 0.6
получим 0.3
уменьшив число на 50%
. Для вычисления разделим 0.3
на 0.6
, умножим на 100
и отнимем 100
, получим 0.3 ÷ 0.6 × 100 — 100 = -50%
.

Как посчитать (высчитать) процент от суммы?

Один процент
— это одна сотая доля. Само слово процент
происходит от латинского «pro centum», что означает «сотая доля».

1.

Калькулятор процентов

Формула расчета доли в процентном отношении.

Пусть задано два числа: A 1 и A 2 . Надо определить, какую долю в процентном отношении составляет число A 1 от A 2 .

P = A 1 / A 2 * 100.

Скачайте удобный
style=»color:red»> калькулятор — любые вычисления,
проценты, расчет по формулам, запись и печать результатов

2. Формула расчета процента от числа.

Пусть задано число A 2 . Надо вычислить число A 1 , составляющее заданный процент P от A 2 .

A 1 = A 2 * P / 100.

3. Формула увеличения числа на заданный процент. Сумма с НДС.

Пусть задано число A 1 . Надо вычислить число A 2 , которое больше числа A 1 на заданный процент P. Используя формулу расчета процента от числа, получаем:

A 2 = A 1 + A 1 * P / 100.

A 2 = A 1 * (1 + P / 100).

Примечание. В нашем калькуляторе ClasCalc есть специальная операция «прибавления процента», которая обозначается +%
.

4. Формула уменьшения числа на заданный процент.

Пусть задано число A 1 . Надо вычислить число A 2 , которое меньше числа A 1 на заданный процент P. Используя формулу расчета процента от числа, получаем:

A 2 = A 1 — A 1 * P / 100.

A 2 = A 1 * (1 — P / 100).

5. Формула вычисления исходной суммы. Сумма без НДС.

Пусть задано число A 1 , равное некоторому исходному числу A 2 с прибавленным процентом P. Надо вычислить число A 2 . Иными словами: знаем денежную сумму с НДС, надо вычислить сумму без НДС. Обозначим p = P / 100, тогда:

A 1 = A 2 + p * A 2 .

A 1 = A 2 * (1 + p).

A 2 = A 1 / (1 + p).

См. Формулы расчета НДС, сумма с НДС, сумма без НДС, выделение НДС

6. Расчет процентов на банковский депозит. Формула расчета простых процентов.

Если проценты на депозит начисляются один раз в конце срока депозита, то сумма процентов вычисляется по формуле простых процентов.

S = K + (K*P*d/D)/100
Sp = (K*P*d/D)/100

Где:
S — сумма банковского депозита с процентами,
Sp — сумма процентов (доход),
K — первоначальная сумма (капитал),
d — количество дней начисления процентов по привлеченному вкладу,
D — количество дней в календарном году (365 или 366).

7. Расчет процентов на банковский депозит при начислении процента на процент. Формула расчета сложных процентов.

Если проценты на депозит начисляются несколько раз через равные промежутки времени и зачисляются во вклад, то сумма вклада с процентами вычисляется по формуле сложных процентов.

S = K * (1 + P*d/D/100) N

Где:

P — годовая процентная ставка,

При расчете сложных процентов проще вычислить общую сумму с процентами, а потом вычислить сумму процентов (доход):

Sp = S — K = K * (1 + P*d/D/100) N — K

Sp = K * ((1 + P*d/D/100) N — 1)

Чтобы определить, что выгоднее — вклад под больший процент начисляемый по формуле простых процентов или вклад под меньший процент, но начисляемый по формуле сложных процентов, см.

Формулы расчета сложных процентов и выбор вклада.

8. Еще одна формула сложных процентов.

Если процентная ставка дана не в годовом исчислении, а непосредственно для периода начисления, то формула сложных процентов выглядит так.

S = K * (1 + P/100) N

Где:
S — сумма депозита с процентами,
К — сумма депозита (капитал),
P — процентная ставка,
N — число периодов начисления процентов.

Подробнее и с примерами расчета процентов по формулам простых и сложных процентов.

Например, вычислить, сколько процентов составляет число 52 от числа 400.

По правилу: 52: 400 * 100 — 13 (%).

Обычно такие отношения встречаются в задачах, когда величины заданы, а нужно определить, на сколько процентов вторая величина больше или меньше первой (в вопросе задачи: на сколько процентов перевыполнили задание; на сколько процентов выполнили работу; на сколько процентов снизилась или повысилась цена и т.

Как найти процент от числа

Решения задач на процентное отношение двух чисел редко предполагают только одно действие. Чаше решение таких задач состоит из 2-3 действий.

Примеры.

1. Завод должен был за месяц изготовить 1 200 изделий, а изготовил 2 300 изделий. На сколько процентов завод перевыполнил план?

1-й вариант

Решение:
1 200 изделий — это план завода, или 100% плана.
1) Сколько изделий изготовил завод сверх плана?
2 300 — 1 200 = 1 100 (изд.)

2) Сколько процентов от плана составят сверхплановые изделия?
1 100 от 1 200 => 1 100: 1 200 * 100 = 91,7 (%).

2-й вариант

Решение:
1) Сколько процентов составляет фактический выпуск изделий по сравнению с плановым?
2 300 от 1 200 => 2 300: 1 200 * 100 = 191,7 (%).

2) На сколько процентов перевыполнен план?
191,7 — 100 = 91,7 (%)
Ответ: на 91,7%.

2. Урожайность пшеницы в хозяйстве за предыдущий год составила 42 ц/га и была занесена в план следующего года. В следующем году урожайность снизилась до 39 ц/га. На сколько процентов был выполнен план следующего года?

1-й вариант

Решение:

42 ц/га — это план хозяйства на этот год, или 100% плана.

1) На сколько снизилась урожайность по сравнению
с планом?
42 — 39 = 3 (ц/га)

2) На сколько, процентов план не довыполнен?
3 от 42 => 3: 42 * 100 = 7.1 (%).

3) Насколько процентов выполнен план этого года?

100 — 7,1 = 92,9 (%)

2-й вариант

Решение:
1) Сколько процентов составляет урожайность этого гола по сравнению с планом?
39 от 42 39: 42 100 — 92,9 (%).
Ответ: 92,9%.

Пример 1

Вы заходите в супермаркет и видите акцию на . Его обычная цена — 458 рублей, сейчас действует скидка 7%. Но у вас есть карта магазина, и по ней пачка обойдётся в 417 рублей.

Чтобы понять, какой вариант выгоднее, надо перевести 7% в рубли.

Разделите 458 на 100. Для этого нужно просто сместить запятую, отделяющую целую часть числа от дробной, на две позиции влево. 1% равен 4,58 рубля.

Умножьте 4,58 на 7, и вы получите 32,06 рубля.

Теперь остаётся отнять от обычной цены 32,06 рубля. По акции кофе обойдётся в 425,94 рубля. Значит, выгоднее купить его по карте.

Пример 2

Вы видите, что игра в Steam стоит 1 000 рублей, хотя раньше продавалась за 1 500 рублей. Вам интересно, сколько процентов составила скидка.

Разделите 1 500 на 100. Сместив запятую на две позиции влево, вы получите 15. Это 1% от старой цены.

Теперь новую цену разделите на размер 1%. 1 000 / 15 = 66,6666%.

100% – 66,6666% = 33,3333%.Такую скидку предоставил магазин.

2. Как посчитать проценты, разделив число на 10

Сначала вы находите размер 10%, а потом делите или умножаете его, чтобы получить нужное количество процентов.

Пример

Допустим, вы кладёте на 530 тысяч рублей на 12 месяцев. Процентная ставка составляет 5%, капитализации не предусмотрено. Вы хотите узнать, сколько денег заберёте через год.

В первую очередь надо вычислить 10% от суммы. Разделите её на 10, передвинув запятую влево на один знак. Вы получите 53 тысячи.

Чтобы узнать, сколько составляют 5%, разделите результат на 2. Это 26,5 тысячи.

Если бы в примере речь шла о 30%, нужно было бы умножить 53 на 3. Для расчёта 25% пришлось бы умножить 53 на 2 и прибавить 26,5.

В любом случае такими крупными числами оперировать довольно просто.

3. Как посчитать проценты, составив пропорцию

Составлять пропорции — одно из наиболее полезных умений, которому вас научили в . С его помощью можно посчитать любые проценты. Выглядит пропорция так:

сумма, составляющая 100% : 100% = часть суммы: доля в процентном соотношении.

Или можно записать её так: a: b = c: d.

Обычно пропорция читается как «а относится к b так же, как с относится к d». Произведение крайних членов пропорции равно произведению её средних членов. Чтобы узнать неизвестное число из этого равенства, нужно решить простейшее уравнение.

Пример 1

Для примера вычислений используем рецепт . Вы хотите его приготовить и купили подходящую плитку шоколада массой 90 г, но не удержались и откусили кусочек-другой. Теперь у вас только 70 г шоколада, и вам нужно узнать, сколько масла положить вместо 200 г.

Сначала вычисляем процентную долю оставшегося шоколада.

90 г: 100% = 70 г: Х, где Х — масса оставшегося шоколада.

Х = 70 × 100 / 90 = 77,7%.

Теперь составляем пропорцию, чтобы выяснить, сколько масла нам нужно:

200 г: 100% = Х: 77,7%, где Х — нужное количество масла.

Х = 77,7 × 200 / 100 = 155,4.

Следовательно, в тесто нужно положить примерно 155 г масла.

Пример 2

Пропорция подойдёт и для расчёта выгодности скидок. Например, вы видите блузку за 1 499 рублей со скидкой 13%.

Сначала узнайте, сколько стоит блузка в процентах. Для этого отнимите 13 от 100 и получите 87%.

Составьте пропорцию: 1 499: 100 = Х: 87.

Х = 87 × 1 499 / 100.

Заплатите 1 304,13 рубля и носите блузку с удовольствием.

4. Как посчитать проценты с помощью соотношений

В некоторых случаях можно воспользоваться простыми дробями. Например, 10% — это 1/10 числа. И чтобы узнать, сколько это будет в цифрах, достаточно разделить целое на 10.

  • 20% — 1/5, то есть нужно делить число на 5;
  • 25% — 1/4;
  • 50% — 1/2;
  • 12,5% — 1/8;
  • 75% — это 3/4. Значит, придётся разделить число на 4 и умножить на 3.

Пример

Вы нашли брюки за 2 300 рублей со скидкой 25%, но у вас в кошельке только 2 000 рублей. Чтобы узнать, хватит ли денег на обновку, проведите серию несложных вычислений:

100% — 25% = 75% — стоимость брюк в процентах от первоначальной цены после применения скидки.

2 400 / 4 × 3 = 1 800. Именно столько рублей стоят брюки.

5. Как посчитать проценты с помощью калькулятора

Если без калькулятора вам жизнь не мила, все вычисления можно делать с его помощью. А можно поступить ещё проще.

  • Чтобы посчитать проценты от суммы, введите число, равное 100%, знак умножения, затем нужный процент и знак %. Для примера с кофе вычисления будут выглядеть так: 458 × 7%.
  • Чтобы узнать сумму за вычетом процентов, введите число, равное 100%, минус, размер процентной доли и знак %: 458 – 7%.
  • Аналогично можно складывать, как в примере с депозитом: 530 000 + 5%.

6. Как посчитать проценты с помощью онлайн-сервисов

На сайте собраны разные калькуляторы, которые высчитывают не только проценты. Здесь есть сервисы для кредиторов, инвесторов, предпринимателей и всех тех, кто не любит считать в уме.

a b c d e f g h i j k l m n o p q r s t u v w x y z